15 resultados para bone metabolism

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: During and after prolonged bed rest, changes in bone metabolic markers occur within 3 days. Resistive vibration exercise during bed rest impedes bone loss and restricts increases in bone resorption markers whilst increasing bone formation. INTRODUCTION: To investigate the effectiveness of a resistive vibration exercise (RVE) countermeasure during prolonged bed rest using serum markers of bone metabolism and whole-body dual X-ray absorptiometry (DXA) as endpoints. METHODS: Twenty healthy male subjects underwent 8 weeks of bed rest with 12 months follow-up. Ten subjects performed RVE. Blood drawings and DXA measures were conducted regularly during and after bed rest. RESULTS: Bone resorption increased in the CTRL group with a less severe increase in the RVE group (p = 0.0004). Bone formation markers increased in the RVE group but decreased marginally in the CTRL group (p < 0.0001). At the end of bed rest, the CTRL group showed significant loss in leg bone mass (-1.8(0.9)%, p = 0.042) whereas the RVE group did not (-0.7(0.8)%, p = 0.405) although the difference between the groups was not significant (p = 0.12). CONCLUSIONS: The results suggest the countermeasure restricts increases in bone resorption, increased bone formation, and reduced bone loss during bed rest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: There is evidence to suggest that β-blockers used in the management of cardiovascular disease may also modulate bone metabolism and reduce bone fragility.

Aim: The study aimed to determine the association between β-blocker use, serum markers of bone turnover and bone loss in early postmenopausal women.

Subjects and methods: In this observational study, we evaluated β-blocker exposure in association with serum levels of C-telopeptide and bone-specific alkaline phosphatase, and rates of bone loss. β-blocker use, concomitant therapy and lifestyle were documented for 197 women (50–59 years), 175 of whom had changes in whole body bone mineral density monitored over a 2–year period.

Results: Twenty-four β-blocker users were identified at baseline. After controlling for concomitant use of hormone therapy, C-telopeptide levels were 6.7% lower among β-blocker users (p = 0.02). No association was detected between bone-specific alkaline phosphatase and β-blocker use. Analysis of 15 β-blocker users and 152 non-users identified 2 years post-baseline showed that levels of C-telopeptide but not bone-specific alkaline phosphatase were predictors of adjusted rates of bone loss (p = 0.008 and p>0.05, respectively). Adjusted rates of bone loss were −0.001 ± 0.026 g cm−2 over 2 years for the users and −0.004 ± 0.025 g cm−2 over 2 years for non-users, but this difference was not significant.

Conclusion: β-blockers might suppress bone resorption with relative preservation of bone formation. A study with greater power is required to determine whether β-blocker use is associated with lower rates of bone loss.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Osteoporosis is a chronic skeletal disease marked by microarchitectural deterioration of the bone matrix and depletion of bone mineral density (BMD), with a consequent increased risk for fragility fractures. It has been frequently associated with depression, which is also a chronic and debilitating disorder with high prevalence. Selective serotonin reuptake inhibitors (SSRIs), first-line agents in the pharmacological treatment of mood and anxiety disorders, have also been shown to negatively affect bone metabolism. SSRIs are the most prescribed antidepressants worldwide and a large number of persons at risk of developing osteoporosis, including older patients, will receive these antidepressants. Therefore, a proper musculoskeletal evaluation of individuals who are being targeted for or using SSRIs is a priority. The aim of this article is to review the evidence regarding the effects of depression and serotonergic antidepressants on bone and its implications for clinical care.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary : The purpose of this study was to examine if the reduction in glucose post-exercise is mediated by undercarboxylated osteocalcin (unOC). Obese men were randomly assigned to do aerobic or power exercises. The change in unOC levels was correlated with the change in glucose levels post-exercise. The reduction in glucose post-acute exercise may be partly related to increased unOC.

Introduction : Osteocalcin (OC) in its undercarboxylated (unOC) form may contribute to the regulation of glucose homeostasis. As exercise reduces serum glucose and improves insulin sensitivity in obese individuals and individuals with type 2 diabetes (T2DM), we hypothesised that this benefit was partly mediated by unOC.

Methods : Twenty-eight middle-aged (52.4 ± 1.2 years, mean ± SEM), obese (BMI = 32.1 ± 0.9 kg m−2) men were randomly assigned to do either 45 min of aerobic (cycling at 75% of VO2peak) or power (leg press at 75% of one repetition maximum plus jumping sequence) exercises. Blood samples were taken at baseline and up to 2 h post-exercise.

Results : At baseline, unOC was negatively correlated with glucose levels (r = −0.53, p = 0.003) and glycosylated haemoglobin (HbA1c) (r = −0.37, p = 0.035). Both aerobic and power exercises reduced serum glucose (from 7.4 ± 1.2 to 5.1 ± 0.5 mmol L−1, p = 0.01 and 8.5 ± 1.2 to 6.0 ± 0.6 mmol L−1, p = 0.01, respectively). Aerobic exercise significantly increased OC, unOC and high-molecular-weight adiponectin, while power exercise had a limited effect on OC and unOC. Overall, those with higher baseline glucose and HbA1c had greater reductions in glucose levels after exercise (r = −0.46, p = 0.013 and r = −0.43, p = 0.019, respectively). In a sub-group of obese people with T2DM, the percentage change in unOC levels was correlated with the percentage change in glucose levels post-exercise (r = −0.51, p = 0.038).

Conclusions : This study reports that the reduction in serum glucose post-acute exercise (especially aerobic exercise) may be partly related to increased unOC.r exercises. The change in unOC levels was correlated with the change in glucose levels post-exercise. The reduction in glucose post-acute exercise may be partly related to increased unOC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: 25-Hydroxyvitamin D serves a crucial role in bone metabolism through its role on osteoclast and osteoblastic function. To assess the implication of vitamin D and its relationship to bone fracture and fracture force, we have examined vitamin D levels in patients requiring inpatient fracture management. METHODS: We performed serological testing of vitamin D levels, calcium, parathyroid hormone and liver function tests on patients admitted to our rural institution in southeastern Australia for inpatient fracture management. All participants completed a questionnaire designed to screen for potential contributing factors to bony fragility. Demographic data were also obtained including age, gender and body mass index. Fracture location and the type of inpatient management as well as the force of injury were included in our analysis. RESULTS: We recruited 100 patients to the study, with a median age of 72 (range 22-98) of whom 66 were women. Most had low-energy fractures (79%), treated by internal fixation (73%) or arthroplasty (9%) with 18 treated non-operatively. The majority of the patients were at best vitamin D insufficient, <75 nmol/L (77%), and 38% were vitamin D deficient (<50 nmol/L). Only 14 patients had a formal diagnosis of osteoporosis at presentation, with 63 patients claiming daily sun exposure in line with recommendations for vitamin D sufficiency. CONCLUSIONS: Our data suggest that the prevalence of vitamin D insufficiency and deficiency is common in patients presenting with fractures in southeastern Australia and is not confined to elderly patients. All patients with fractures should be assessed for vitamin D levels and treated in accordance with vitamin D deficiency guidelines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, β-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and ε. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the association between undercarboxylated osteocalcin (ucOC) and lower-limb muscle strength in women over the age of 70years. The study also aims to confirm the association between bone turnover markers and heel ultrasound measures. A post-hoc analysis using data collected as part of a randomized placebo-controlled trial of vitamin D supplementation. An immunoassay was used to quantify total OC (tOC), with hydroxyapatite pre-treatment for ucOC. We determined associations of absolute and relative (ucOC/tOC; ucOC%) measures of ucOC with lower-limb muscle strength, heel ultrasound measures of speed of sound (SOS) and broadband ultrasound attenuation (BUA), bone turnover markers (BTMs; P1NP and CTx) and the acute phase protein alpha-1-antichymotrypsin (α-ACT). ucOC%, but not absolute ucOC concentration, was positively associated with hip flexor, hip abductor and quadriceps muscle strength (all p<0.05). ucOC% was negatively associated with α-ACT (β-coefficient=-0.24, p=0.02). tOC was positively associated with both P1NP and CTx (p<0.001). For each per unit increase in tOC (μg/L) there was a corresponding lower BUA, SOS and SI (β-coefficient = -0.28; -0.23 and -0.23, respectively; all p<0.04). In conclusion, ucOC% is positively associated with muscle strength and negatively associated with α-ACT. These data support a role for ucOC in musculoskeletal interactions in humans. Whilst tOC is associated with bone health, ucOC% and ucOC may also be linked to falls and fracture risk by influencing muscle function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FRAX(©) evaluates 10-year fracture probabilities and can be calculated with and without bone mineral density (BMD). Low socioeconomic status (SES) may affect BMD, and is associated with increased fracture risk. Clinical risk factors differ by SES; however, it is unknown whether aninteraction exists between SES and FRAX determined with and without the BMD. From the Geelong Osteoporosis Study, we drew 819 females aged ≥50 years. Clinical data were collected during 1993-1997. SES was determined by cross-referencing residential addresses with Australian Bureau of Statistics census data and categorized in quintiles. BMD was measured by dual energy X-ray absorptiometry at the same time as other clinical data were collected. Ten-year fracture probabilities were calculated using FRAX (Australia). Using multivariable regression analyses, we examined whether interactions existed between SES and 10-year probability for hip and any major osteoporotic fracture (MOF) defined by use of FRAX with and without BMD. We observed a trend for a SES * FRAX(no-BMD) interaction term for 10-year hip fracture probability (p = 0.09); however, not for MOF (p = 0.42). In women without prior fracture (n = 518), we observed a significant SES * FRAX(no-BMD) interaction term for hip fracture (p = 0.03) and MOF (p = 0.04). SES does not appear to have an interaction with 10-year fracture probabilities determined by FRAX with and without BMD in women with previous fracture; however, it does appear to exist for those without previous fracture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Critical illness may lead to altered bone turnover and associated adverse health outcomes. This systematic review found moderate evidence for a positive association between critical illness and increased bone turnover. Prospective cohort studies that identify the extent and risk factors for critical illness related bone loss are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMMARY: The addition of whole-body vibration to high-load resistive exercise may provide a better stimulus for the reduction of bone loss during prolonged bed rest (spaceflight simulation) than high-load resistive exercise alone. INTRODUCTION: Prior work suggests that the addition of whole-body vibration to high-load resistive exercise (RVE) may be more effective in preventing bone loss in spaceflight and its simulation (bed rest) than resistive exercise alone (RE), though this hypothesis has not been tested in humans. METHODS: Twenty-four male subjects as part of the 2nd Berlin Bed Rest Study performed RVE (n = 7), RE (n = 8) or no exercise (control, n = 9) during 60-day head-down tilt bed rest. Whole-body, spine and total hip dual X-ray absorptiometry (DXA) measurements as well as peripheral quantitative computed tomography measurements of the tibia were conducted during bed rest and up to 90 days afterwards. RESULTS: A better retention of bone mass in RVE than RE was seen at the tibial diaphysis and proximal femur (p ≤ 0.024). Compared to control, RVE retained bone mass at the distal tibia and DXA leg sub-region (p ≤ 0.020), but with no significant difference to RE (p ≥ 0.10). RE impacted significantly (p = 0.038) on DXA leg sub-region bone mass only. Calf muscle size was impacted similarly by both RVE and RE. On lumbar spine DXA, whole-body DXA and calcium excretion measures, few differences between the groups were observed. CONCLUSIONS: Whilst further countermeasure optimisation is required, the results provide evidence that (1) combining whole-body vibration and high-load resistance exercise may be more efficient than high-load resistive exercise alone in preventing bone loss at some skeletal sites during and after prolonged bed rest and (2) the effects of exercise during bed rest impact upon bone recovery up to 3 months afterwards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To better understand the effects of prolonged bed-rest in women, 24 healthy women aged 25 to 40 years participated in 60-days of strict 6° head-down tilt bed-rest (WISE-2005). Subjects were assigned to either a control group (CON, n=8) which performed no countermeasure, an exercise group (EXE, n=8) undertaking a combination of resistive and endurance training or a nutrition group (NUT, n=8), which received a high protein diet. Using peripheral quantitative computed tomography (pQCT) and dual X-ray absorptiometry (DXA), bone mineral density (BMD) changes at various sites, body-composition and lower-leg and forearm muscle cross-sectional area were measured up to 1-year after bed-rest. Bone loss was greatest at the distal tibia and proximal femur, though losses in trabecular density at the distal radius were also seen. Some of these bone losses remained statistically significant one-year after bed-rest. There was no statistically significant impediment of bone loss by either countermeasure in comparison to the control-group. The exercise countermeasure did, however, reduce muscle cross-sectional area and lean mass loss in the lower-limb and also resulted in a greater loss of fat mass whereas the nutrition countermeasure had no impact on these parameters. The findings suggest that regional differences in bone loss occur in women during prolonged bed-rest with incomplete recovery of this loss one-year after bed-rest. The countermeasures as implemented were not optimal in preventing bone loss during bed-rest and further development is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prolonged bed rest is used to simulate the effects of spaceflight and causes disuse-related loss of bone. While bone density changes during bed rest have been described, there are no data on changes in bone microstructure. Twenty-four healthy women aged 25 to 40 years participated in 60 days of strict 6-degree head-down tilt bed rest (WISE 2005). Subjects were assigned to either a control group (CON, n = 8), which performed no countermeasures; an exercise group (EXE, n = 8), which undertook a combination of resistive and endurance training; or a nutrition group (NUT, n = 8), which received a high-protein diet. Density and structural parameters of the distal tibia and radius were measured at baseline, during, and up to 1 year after bed rest by high-resolution peripheral quantitative computed tomography (HR-pQCT). Bed rest was associated with reductions in all distal tibial density parameters (p < 0.001), whereas only distal radius trabecular density decreased. Trabecular separation increased at both the distal tibia and distal radius (p < 0.001), but these effects were first significant after bed rest. Reduction in trabecular number was similar in magnitude at the distal radius (p = 0.021) and distal tibia (p < 0.001). Cortical thickness decreased at the distal tibia only (p < 0.001). There were no significant effects on bone structure or density of the countermeasures (p ≥ 0.057). As measured with HR-pQCT, it is concluded that deterioration in bone microstructure and density occur in women during and after prolonged bed rest. The exercise and nutrition countermeasures were ineffective in preventing these changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UNLABELLED: Individuals who are involved in explosive sport types, such as 100-m sprints and long jump, have greater bone density, leg muscle size, jumping height and grip strength than individuals involved in long-distance running. INTRODUCTION: The purpose of this study is to examine the relationship between different types of physical activity with bone, lean mass and neuromuscular performance in older individuals. METHODS: We examined short- (n = 50), middle- (n = 19) and long-distance (n = 109) athletes at the 15th European Masters Championships in Poznań, Poland. Dual X-ray absorptiometry was used to measure areal bone mineral density (aBMD) and lean tissue mass. Maximal countermovement jump, multiple one-leg hopping and maximal grip force tests were performed. RESULTS: Short-distance athletes showed significantly higher aBMD at the legs, hip, lumbar spine and trunk compared to long-distance athletes (p ≤ 0.0012). Countermovement jump performance, hop force, grip force, leg lean mass and arm lean mass were greater in short-distance athletes (p ≤ 0.027). A similar pattern was seen in middle-distance athletes who typically showed higher aBMD and better neuromuscular performance than long-distance athletes, but lower in magnitude than short-distance athletes. In all athletes, aBMD was the same or higher than the expected age-adjusted population mean at the lumbar spine, hip and whole body. This effect was greater in the short- and middle-distance athletes. CONCLUSIONS: The stepwise relation between short-, middle- and long-distance athletes on bone suggests that the higher-impact loading protocols in short-distance disciplines are more effective in promoting aBMD. The regional effect on bone, with the differences between the groups being most marked at load-bearing regions (legs, hip, spine and trunk) rather than non-load-bearing regions, is further evidence in support of the idea that bone adaptation to exercise is dependent upon the local loading environment, rather than as part of a systemic effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last 50 years, the number of individuals over the age of 65 years in the United States has doubled. A further doubling is expected by 2030, dramatically increasing the number of adults at risk of sarcopenia, a condition characterized by an age-related loss of muscle mass with an associated reduction in physical function. A reduction in muscle mass and functional capacity is typically viewed as an undesirable, yet inevitable, consequence of aging, and in its early stages, may be easily masked by subtle lifestyle adaptations. However, advanced sarcopenia is synonymous with physical frailty and is associated with an increased likelihood of falls and impairments in the ability to perform routine activities of daily living. In many instances, the progression of sarcopenia is mirrored by a decrease in physical activity, which feeds into a vicious cycle of disuse and negative outcomes, including impaired insulin action, accelerated loss of muscle and bone mass, fatigue, impaired motor control and functional capacity, and increased morbidity and mortality.